
Towards the UAL Open Source Project

N. Malitsky, R. Talman, M. Blaskiewicz, R. Calaga, R. Fliller III,
A. Luccio, T. Satogata, J. Wei, BNL, Upton, NY 11973, USA

Abstract

Unified Accelerator Libraries (UAL[1]) software has
been introduced as an open accelerator simulation envi-
ronment providing support for many-to-many associations
between diverse accelerator algorithms and diverse accel-
erator applications. Recently, UAL has been successfully
applied to the development and study of the SNS Ring re-
alistic beam dynamics modelincluding a complex combi-
nation of several physical effects and dynamic processes
(such as injection painting, field errors, space charge ef-
fects, impedances, fringe fields, misalignments, etc.). The
SNS and previous applications have confirmed the major
UAL conceptual solutions and have encouraged us to trans-
form this software into an Open Source project[2]. The
major efforts have been releasing documentation and con-
solidation of UAL modules based on the Accelerator Prop-
agator Framework (APF). At this time, the documentation
encompasses User Guide, API specification of C++ classes,
Perl User interface, and a collection of feature-illustrating
examples. Also APF has been implemented to enhance the
UAL infrastructure by providing a uniform mechanism for
development and integration of accelerator algorithms. The
key part of this approach is the Accelerator Propagator De-
scription Format (APDF) that provides physicists a mech-
anism for switching among simulation models within their
applications.

SNS RING APPLICATION

The need to reduce beam losses to parts per ten thou-
sand in the SNS high intensity proton accelerator com-
plex have introduced a new level of requirements and ex-
pectations for beam dynamics studies. Realistic predic-
tions at this level of precision demand a close reproduc-
tion of a complex combination of effects and dynamic pro-
cesses in the accelerator simulation model. To address
these tasks, the SNS Ring Accelerator Physics Group de-
veloped the SNS Ring package based on the UAL simula-
tion environment[3]. Topics to which the package has been
applied include[4][5]:

� optimization of injection painting schemes;

� nonlinear effects arising from kinematics terms, mag-
net imperfections, and fringe fields;

� dynamic aperture and diffusion map studies;

� effect of space charge during transverse painting;

� tune spreads from space charge, chromaticity, and
other nonlinearity in combination;

� intensity limitation and choice of working point dic-
tated by imperfection resonance crossing in the pres-
ence of space charge;

� half-integer coherent resonance crossing;

� collective instability due to transverse coupling
impedance;

� halo development and beam loss modeling.

These intensive studies required the deployment of the
UAL software on parallel clusters. The original architec-
ture was comfortably fitted to the Message-Passing Inter-
face (MPI) parallel environment without any changes of ex-
isting modules. Then the time consuming algorithms were
implemented as extensions (C++ shared libraries) and com-
bined with other sequential and parallel components.

ACCELERATOR PROPAGATOR
FRAMEWORK

The extensibility of the UAL environment is provided by
its main architectural principle: separation of propagators
from accelerator elements. This approach enables one to
apply a variety of different simulation modules to the same
accelerator lattice. Having initially rejected any implicit
linkage between algorithm and element, the Accelerator
Propagator Framework defines a mechanism for connect-
ing accelerator elements with propagators tailored to each
particular simulation model. In order to describe the struc-
ture of the simulation model, we have introduced the Ac-
celerator Propagator Description Format (APDF). One can
consider the APDF file to be a complement to the MAD
lattice file. Its structure and relationship to elements and
algorithms are indicated in Fig. 1.

Just as the initial lattice description unwinds into a (long)
ordered list of all elements in the lattice, the propagator
builder associates an appropriate propagator with every el-
ement in this list. But, as Fig.1 indicates, default associ-
ations permit the APDF file to be quite brief. Some of
the possible algorithms are indicated in the figure. “Mlt-
Tracker” and “DriftTracker” implement pure, element-
by-element, kick tracking, for example through elements
“qd1” and “sd1”, by virtue of their element type being ei-
ther “quadrupole” or “sextupole”. “SectorTracker” imple-
ments concatenated, matrix or nonlinear mapping, for ex-
ample from just before element “d1” to just before element
“qf1”. Tracking algorithm can also be associated with ele-
ment based on the element name; for example the “BPM”
algorithm is associated with element “bpm1” in Fig.1. This
facilitates special processing at particular elements. Like

SectorTracker

Collimator

APDF file d1

qf1

bpm1

DriftTracker

MltTracker

<apdf>
 <propagator>
 <create>
 . . .
 <link algorithm="SectorTracker" sector="d1,qf1"/>

 . . .

 <link algorithm="DriftTracker" types="Default"/>
 <link algorithm="MltTracker" types="Quadrupole|Sextupole"/>

 </create>
 </propagator>
</apdf>

 <link algorithm="BPM" elements="bpm1"/>
BPM

sd1

qd1RfCavityTracker

Catalog of Algorithms
Accelerator

MAD/ADXF

Accelerator Propagator

Figure 1: Figure illustrating the APDF-defined linkage between accelerator elements (or sectors) on the right to propaga-
tion elements on the left.

the MAD format, APDF addresses a spectrum of appli-
cations ranging from small special tasks to full-scale, re-
alistic model encompassing heterogeneous algorithms and
special effects. Some possible modeling scenarios are in-
dicated in Table1, which is intended to be self-explanatory.
Many of these scenarios have been applied within UAL in
the past, but only as dedicated applications. The APDF
provides these capabilities without any additional program-
ming complication. Examples have been:

� ����������	
 ��	 ���	��� �� 	������ � �� ��	����

� ����	�
	����� ��������� �� 	������

� �	�� ��	����� ���� ����� �� 	������ ���� ����	���

	��� ������� ��	�� �	!��" �#�������� � ��
�����

$�	�% ��#�% �� ��	�����

� &�������	���� ���
���% '� � !��!	�	���� ��� 	���(�

�)�) ��	 ��	����� ��	������� ��(����%

�������� ���� 	� *+ ��!�
�

, ���	�� 	!������% �	
�% &� �
�������!� 	�����	�����

�	�������� ��(�����	����

� -!���	

��	
�.�� ������% '� �� ', � !��!	�	��� ���

��	���	% �!��	���% ���� �!���	
 ������

/ 0�	����!
�����
	��� ����!�
� �!��������� 	!�%

	!
����� ���
��� !
�� ���� ��	�����

1 ��

���	
� 22��	
�����33 	

 �� ��� 	��(�

UAL ARCHITECTURE

The organization of the UAL components is indicated
schematically in Fig. 2

At this time, the APF-based modules included in UAL
are:

� ZLIB: numerical library for differential algebra[6]

T
E

A
P

O
T

Z
LI

B

P
A

C

A
C

C
S

IM

M
P

I

ALE
RHIC LHC SNS

PERL API

T
IB

E
T

A
N

IC
E

A
IM

S
P

IN
K

Application Scripts

Element−Algorithm−Probe Framework

Extensions User
Interface

Figure 2: UAL architecture. The figure represents depen-
dency metaphorically, by gravity; codes appearing higher
up are supported by (that is, use) codes further down. The
upper levels of the figure indicate control via scripting lan-
guage (PERL).

� PAC: Platform for Accelerator Codes[7]

� TEAPOT: Thin Element Program for Optics and
Tracking[8]

� ACCSIM : Accelerator Simulation Code[9]

� TIBETAN : longitudinal phase space tracking
program[10]

Modules that are partially supported and are under active
development are

� SPINK: tracking code for polarized particles in a cir-
cular accelerator[11]

� ICE: Incoherent and Coherent Effects[12]

� AIM: Accelerator Instrumentation Module

The Application Programming Interface (API), written in
Perl, provides a universal shell for integrating and manag-
ing all project extensions. Consolidation of C++ interfaces
has also created a basis for supporting Swig-based inter-
faces to other script languages (e.g. Python).

POST PROCESSING APPLICATIONS

Another potential benefit of an environment such as
UAL is the feasability and economy of “infrastruc-
ture” (shared resources) such as postprocessors, plot-
ting/histogramming/fitting for visualization, input and out-
put translation, and parallel processing.

One example of this sort has been preliminary in-
tegration of the UAL environment with the ROOT
environment[13]. ROOT is an open source project that has
been used for many years by high energy nuclear and par-
ticle physics experiments for data and simulation analysis.
It consists of a C/C++ interpreter CINT and a large number
of C++ classes implementing fitting, graphing, GUI, math-
ematics and various programming functions. A C/C++ in-
terpeter offers an alternative approach to traditional script-
ing languages, such as PERL or PYTHON, and allows
physicists and developers to use a single programming lan-
guage for an entire project. This environment is espe-
cially appropriate for detector background investigations
conducted jointly by detector shielding groups and accel-
erator physicists because ROOT is so well established in
the particle physics sector. In one such investigation a pro-
posed RHIC collimator setup was investigated by process-
ing UAL tracking results with the ROOT toolkit. The re-
sulting particle flux distributions can then be passed to ex-
perimental physicists for their simulation of detector back-
ground.

Another post processing example involved the investi-
gation of Model Independent Analysis (MIA[14]), starting
from the following (complete) APDF file:

������

��������	���

�
�� �
����	����������������	�������

	����� ������
	� ��

�
�� �
����	����������������
��������

	������� ���� ��

�
�� �
����	������������!
	�������

	������"�������
�#��$	���
�#!�
	���
�#

%&'(����#)����� ��

�
�� �
����	�����* ���+��,�-�.�	��������

	������,�-�.�	�� ��

�
�� �
����	����!*��� �!�

	������!���	��� ��

���������	���

�������

To simulate MIA, multiturn output from T turns at each
of B BPM’s was recorded and the resulting TxB matrix

was subsequently subjected to singular value decomposi-
tion analysis to extract the fundamental modes of the accel-
erator. When the lattice Twiss functions were reconstructed
from the extracted phases at every BPM they were in ex-
cellent agreement with the lattice functions determined di-
rectly from the original lattice model.

Another post processing approach is to launch a graph-
ing program from within the UAL PERL script. For non-
linear analysis a by-now standard approach is to subject
turn-by-turn data to FFT analysis, to extract the tunes by
peak location and then to identify accelerator resonances as
sum or difference frequencies. The program GRACE[15]
makes all these capabilities available and provides graphi-
cal output either file driven or via pipe. Zooming, panning,
labeling and other prettification and output of the graphs
can then be performed, completely independent of UAL,
using routine GRACE capabilities. Phase space plots nor-
malized by calculated Twiss parameters can be produced
similarly.

REFERENCES

[1] N. Malitsky and R. Talman,Unified Accelerator Libraries,
AIP 391, 1996.

[2] See �		����///0��
01�
0��.0 References to original
reports and publications are contained in the User Guide ac-
cessible from that source: N. Malitsky and R. Talman, UAL
User Guide, BNL Formal Report 71010-2003, 2002

[3] N.Malitsky et al, Application of UAL to High-Intensity
Beam Dynamics Studies in the SNS Accumulator Ring,
EPAC 2002.

[4] A.V.Fedotov et al.Effect of Nonlinearities on Beam Dynam-
ics in the SNS Accumulator Ring, EPAC00, p. 1492.

[5] A.V.Fedotov et al.Excitation of Resonances Due to the
Space Charge and Magnet Errors in the SNS Ring, PQC01,
p. 2878.

[6] Y. Yan and C-Y. YanNumerical Library for Differential Al-
gebra, SSCL-300, 1990.

[7] N. Malitsky, A. Reshetov, and G. Bourianoff,Platform for
Accelerator Codes, SSCL-675, 1994.

[8] L. Schachinger and R. Talman,TEAPOT: A Thin Ele-
ment Program for Optics and Tracking, Part. Accel.22, 35
(1987).

[9] F. Jones,�		����///0	�����0����������.�������0�	�
,
User’s Guide to ACCSIM, 1990.

[10] J. Wei,Longitudinal Dynamics of the Non-Adiabatic Regime
on Alternating-Gradient Synchrotrons, Ph.D thesis (1990).

[11] A. Luccio, Spin Tracking in RHIC (Code Spink), Proceed-
ings of the Adriatico Research Conference, World Scien-
tific, 1997, p.235.

[12] M. Blaskiewicz, PRSTAB, Volume 1, 044201, 1998.

[13] R. Brun et al.,An Object-Oriented Data Analysis Frame-
work, �		�������	0����0��

[14] J.Irwin et al.,Model-Independent Beam Dynamics Analysis,
Physical Review Letters, Vol 82(8), 1999.

[15] �		�����
����2��	�0/��3����0��0�
�4�����

